Minimizing Noise and Bias in 3D DIC

Correlated Solutions, Inc.

Overview

- Overview of Noise and Bias
- Digital Image Correlation
 Background/Tracking Function
- Minimizing Noise
 - Focus
 - Contrast/Lighting
 - Glare
 - F-stop
 - Stereo-Angle/Lens selection
 - Good speckle pattern

Eliminating Bias

- Eliminating aliasing
- Eliminating contaminations/dust
- Using a our Distortion Correction module for instances of non-parametric distortions, such as the stereomicroscope.

Overview of Noise and Bias

- Noise: random, zero-mean deviations from the correct result
- Bias: systematic deviations from the correct result
- Noise and bias are present for location (inplane, out-of-plane), displacement, and strain
- Noise is unavoidable, but can be minimized with careful setup
- Bias can be reduced or eliminated with proper setup and parameters

Minimizing Noise:

- Accuracy can be very variable. Some amount of noise will always be present, but it is possible to minimize noise by paying attention to the following set-up parameters:
 - Focus
 - Contrast/Lighting
 - Glare
 - F-stop
 - Stereo-Angle/Lens selection
- Once we have the proper set-up, speckle
 pattern quality is the most important factor
 for minimizing noise

Eliminating Bias:

- Eliminating aliasing
- Eliminating contaminations/dust
- Using a our Distortion Correction module for instances of non-parametric distortions, such as the stereo-microscope.

DIC background

To understand noise and accuracy is presented in DIC, it's essential to understand how we track the specimen

- We track the specimen by assigning subsets throughout the area of interest that contain unique speckle information.
- We track where these subsets move by checking for possible matches at several locations and use a similarity score (correlation function) to grade them. The march is where the error function is minimized.
- Classic correlation function: sum of squared differences (SSD) of the pixel values (smaller values = better similarity)

- Example
 - White pixels are gray level 100
 - Black pixels are gray level 0
- An image is a matrix of natural integers

		In	nage	, in m	nemo	ry	Image, on screen										
100	100	100	0	0	0	100	100	100									
100	100	100	0	0	0	100	100	100									
100	100	100	0	0	0	100	100	100									
0	0	0	0	0	0	0	0	0									
0	0	0	0	0	0	0	0	0									
0	0	0	0	0	0	0	0	0									
100	100	100	0	0	0	100	100	100									
100	100	100	0	0	0	100	100	100									
100	100	100	0	0	0	100	100	100									

- Example
 - The specimen moves such that its image moves 1 pixel up and right

	Ima	age a	fter r	notio	n, in	mem	ory		Im	age a	after r	notio	n, or	n scre	een	
100	100	100	100	0	0	0	100	100								
100	100	100	100	0	0	0	100	100								
0	0	0	0	0	0	0	0	0								
0	0	0	0	0	0	0	0	0								
0	0	0	0	0	0	0	0	0								
100	100	100	100	0	0	0	100	100								
100	100	100	100	0	0	0	100	100								
100	100	100	100	0	0	0	100	100								
100	100	100	100	0	0	0	100	100								

Example: subset at (x;y)=(5;5), displacement candidate (u;v)=(-2;-2)

$$C(5,5,-2,-2) = \sum_{i,j=-2}^{2} (I(5+i,6+j) - I^{*}(5-2+i,5-2+j))^{2}$$

 $(100-0)^{2} + (0-0)^{2} + (0-0)^{2} + (0-0)^{2} + (100-0)^{2} + (0-100$

100	100	100	100	0	0	0	100	100
100	100	100	100	0	0	0	100	100
0	0	0	0	0	0	0	0	In
0	0	0	0	0	0	0	0	nage
0	0	0	0	0	0	0	0	after
100	100	100	100	0	0	0	100	moti
100	100	100	100	0	0	0	100	on
100	100	100	100		_0	0	100	100
100	100	100	100	0	(L 0	1;∨)=(0	-Z;-2 100) 100
	100 100 0 100 100 100	100 100 100 100 0 0 0 0 0 0 100 100 100 100 100 100 100 100 100 100	100 100 100 100 100 100 0 0 0 0 0 0 0 0 0 100 0 0 100 100 1 100 100 1 100 100 1 100 100 1	100 100 100 100 100 100 100 100 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 100 100 1 0 100 100 1 0 100 100 1 0 100 100 1 0 100 100 1 0	100 100 100 100 0 100 100 100 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 0 100 100 100 100 0 100 100 100 100 0	1001001001000100100100100001000000000000000000000000000001001001001000010010010010000100100100000	1001001001000010010010010000000000000000000000000000000000000100100100100000100100100000100100100000	100 100 100 100 0 0 0 100 100 100 100 100 0 0 0 100 100 100 100 100 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 100 0 0 0 0 100 100 100 100 0 0 0 0 100 100 100 100 100 0 0 0 0 0 100 100 100 100 0 0 0 0 0 100 100 100

100	100	100	0	0	0	100	100	100
100	10	(x;y)=	=(5;5)	0	0	100	100	100
100	100	100	0	0	0	100	100	Im
0	0	0	0	0	0	0	0	age b
0	0	0	0	0	0	0	0	efore
0	0	0	0	0	0	0	0	e mot
100	100	100	0	0	0	100	100	ion
100	100	100	0	0	0	100	100	100
100	100	100	0	0	0	100	100	100

- Example: subset at (x;y)=(5;5), displacement candidate (u;v)=(1;1)
 C(5,5,1,1) = 0
- Better correlation score than candidate (u;v)=(-2;-2) [18,000]
 Indeed it is the smallest score achieveable (perfect match)

							i.							1	i.		
100	100	100	0	0	0	100	100	100	100	100	100	100	0	0	0	100	100
100	10	(x;y)=	=(5;5))0	0	100	100	100	100	100	100	100	0	0	0	100	100
100	100	100	0	0	0	100	100	Im	0	0	0	0	0	0	0	0	Im
0	0	0	0	0	0	0	0	age b	0	0	0	0	0	0	0	0	lage .
0	0	0	0	0	0	0	0	efore	0	0	0	0	0	• 0 1	0	0	after
0	0	0	0	0	0	0	0	e mot	100	100	100	100	0	0	0	100	moti
100	100	100	0	0	0	100	100	ion	100	100	100	100	0	0	d	100	on
100	100	100	0	0	0	100	100	100	100	100	100	100	0	0	(100	100
100	100	100	0	0	0	100	100	100	100	100	100	100	0	0	u,v)= 0	100 100	100

Noise Reduction

• How do we reduce displacement noise?

$$Var = \frac{2\sigma^2}{\sum \left(\frac{\partial G}{\partial x}\right)^2}$$

- Reduce camera noise
 - Limited options!
- Increase subset size
 - Loss of spatial resolution
- Optimize speckle pattern and test setup
 This is our best and most important option

Iteratively finding the match

Shape of error curve

We optimize for U, V, strain, and rotation
Let us consider the 1D case - U only

Error

U-position

Shape of error curve

Typical pattern

Noise in error curve

Effects of noise

- Noise normally cannot be controlled
- We must increase the signal
- Steeper drop = better confidence

What do we want in a pattern?

How do we make the bowl <u>deep</u>?

Good contrastGood speckle size

How do we make the bowl <u>narrow</u>?

- Sharp edges
- Good focus
- Proper F-stop

Great pattern example

-2.5

-3.5

-1.5

-0.5

0.5

1.5 2.5 3.5

Great pattern example

- Sharpie marker on white paint
- Bright whites
- Dark blacks
- Hard edges
- Consistent speckle size

High-contrast printed pattern

High-contrast printed pattern

- Laser printer
- CSI target generator
- Good contrast
- Consistent size

A typical painted pattern

A typical painted pattern

- Inconsistent size
- No bright white areas
 Soft odges
- Soft edges

Effect of reduced contrast

Other considerations

- Focus
- Brightness
- Glare
- F-stop

Effect of reduced focus

Aperture too small

Effect of low light

Effect of too much light

- Aliasing occurs when a signal isn't sampled frequently enough to represent it.
- Aliasing in a 1D signal:

 Aliasing occurs when the scene contains high-frequency content that cannot be represented by the pixel resolution of the image

- Aliasing is dangerous because it does not always appear in the "sigma" value
- We can sometimes see aliasing in the result

This is both a bias and an accuracy problem even when not apparent!

Overly fine pattern

Showing translation

Displacement error from aliasing

- We calculate the actual displacement vs.
 the local measured displacement
- The error is plotted vs. position

Displacement error from aliasing

Strain error from aliasing

- This can cause very serious strain errors!
- Waves of compressive strain and tensile strain cause ripples

 Low fill factors can exacerbate the aliasing issue for a given pattern

Bias Due to Aliasing

An example of an extremely aliased image
 due to dithering from a laser printer

An example of an extremely aliased image
 due to dithering from a laser printer

Aliased shape

With low-pass filtering of image

Effects of Aliasing

Greatly reduces aliasing - at the expense of actual accuracy

Files Options	Thresholding	Post-Processing
Correlation Options	s	
Interpolation:	Optimized 8-tap	•
Criterion:	Normalized squar	ed differences 🔹 👻
Subset weights: Gaussian weights -		
Low-pass filter Incremental co Processor Optimiza	r images prrelation	
Multi-processor/mu	Ilti-core: 4	V
Run		Cancel

Effects of Aliasing

Use of low pass filter can help

- Aliasing can cause severe biases and noise in displacement and strain
- Best to avoid in the first place bigger patterns or more magnification
- Can be mitigated
 - Low-pass image filter
 - This comes at the expense of resolution
 - Higher order interpolation

A better pattern

Showing translation

A better pattern

 Stronger pattern - aliasing still visible (low quality camera) but much weaker

Mixed sizes - synthetic

Mixed sizes - real

-0.06

Speckle Pattern Conclusions

Why is this important?

Conclusions

Z-accuracy

Speckle Pattern Conclusions

False strain (300uε vs 1300uε)

Speckle Pattern Conclusions

0.0031

- 3D image correlation contains another important step
- We want to minimize our Sigma_X/Y/Z
 - This will minimize our strain noise
 - Two components
 - Low pixel sigma
 - Proper test setup

Camera pinhole point

Optical axis

Camera pinhole point

- By taking the set of all possible points, we generate a 3D volume in space.
- The volume has a height (Sigma_Y), a width (Sigma_X), and a depth (Sigma_Z)

- How to minimize the error volume?
 - Minimize noise

Effects of setup

Short focal length; small angle

Effects of setup

Short focal length; large angle
Effects of setup

Long focal length; large angle

Minimizing Bias & Noise

 Noise in displacement and strain is strongly dependent on stereo angle

Minimizing Bias & Noise

Noise is lowest near the optical axis

Bias Due to Contaminations

 Contamination can cause severe biases in displacement (u shown):

 This bias will have a strong effect on calculated strains (exx shown):

Bias Due to Contaminations

- Contaminations (e.g., dust on sensor)
 cause large localized bias in displacement
 estimates
- Typically, a large erroneous strain concentration results
- Not possible to mitigate through processing techniques
- Always check before taking measurements

Bias Due to Poor Calibration

- A low calibration score is indicative of a good calibration IF we have enough information in the calibration images
 - Large grid that fills up entire image
 - Very large grid tilts (tilt it until it starts to go out of focus)
 - 15-25 calibration image sets
- If using short focal length lenses (8mm, 12mm), you might need to change the distortion order to 2 or 3 in the distortion window.
- In high magnification applications, you might need to select "High Mag" in the calibration window.

Bias Due to Poor Calibration

- Distortion order for short lenses
 - Calibrate at distortion order 1. Look at your kappa 1 (a lens distortion parameter) in your calibration results.
 - Calibrate at distortion order 2. You'll have a kappa 2 now, but if your kappa 1 is the same as what you got for a distortion order of 1, then the distortion order of 1 was OK.
 - If the kappa 1 changed, then repeat for an order of 3 and see if kappa 2 changed.
 - Once you figure out the distortion order, you can use that that order anytime you use that camera-lens combination

Bias Due to Poor Calibration

- High Magnification
 - For high magnification instances you might see very large calibration errors.
 - This is because the limited depth of field doesn't allow us to tilt the grid enough in order to extract the camera sensor positions.
 - Check your center x, center y for each camera in your calibration results
 - The centers should be ROUGHLY the centers of the sensors (i.e. for 5MP cameras that are 2448x2048 pixels, you should see centers of 1224,1024)
 - If centers are WAY off (by more than 50%; maybe even negative), select "high mag"
 - This will force the centers to the center of the sensor (1224x1024 in this case).
 - Only use the high mag option when completely necessary because it forces the software to make some assumptions that we'd rather extract from the calibration image.
 - "High mag" is not an option for the stereo microscope module; we use a different calibration method (see next slides)

- For simple lenses the calibration error is typically not a concern when using proper calibration techniques
- For complex optics, such as the stereo microscope, parametric distortion models are typically not sufficient and severe bias results
- For accurate measurements using stereo microscopes (or SEMs), a non-parametric distortion calibration technique is required
- DIC can be used to calibrate such distortions using a simple motion constraint scheme

Uncorrected shape for a flat plate

Corrected shape for a flat plate

Uncorrected strain for rigid motion

Bias Elimination

Corrected strain for rigid motion

Conclusions

- With proper set-up, we can eliminate bias and minimize noise.
- Front-end reductions
 - Proper test setup (focal length, stereo angle, clean lens/sensor, good lighting, correct F-stop, well focused, no blur, no glare)
 - Good speckle pattern (consistent speckle pattern, 50% coverage, good contrast, sharp speckle edges)
 - Good calibration (good tilt in calibration images, select high magnification or distortion order if necessary)

Back-end reductions

- Correct subset sizes
- Low-pass filtering, if necessary
- Distortion correction for stereo microscope applications