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2-D Digital Image Correlation

Fundamentals
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Deformation Measurement

* Full-field measurement
* Non-intrusive

* Planar specimen only

* No out-of-plane motion

exx [1] - Lagrange
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Deformation Measurement

 Large range of size scales
(109 to 104 m)

 Large range of time scales
(static to 5,000,000 fps)
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* Monocular (cyclopean) vision cannot
determine the size of objects

» Consequence: a 200% isotropic
deformation of an object produces the
same image as if the object was
moved to one-half its original distance
from the visual sensor

* WWe must assume the object is planar,
parallel to and at a constant distance
from the visual sensor during the
entire experiment
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How?? Given a point and its signature in the undeformed image,
search/track in deformed image for the point which has a
signature which maximizes a similarity function.
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In practice, a single value is not a unique signature of a point,
hence neighboring pixels are used.

Such a collection of pixel values is called a subset or window.

o8,
e
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SOLUTION S Technique
The uniqueness of each signature is e
only guaranteed if the surface has a i

High-contrast

non-repetitive, isotropic, high
contrast pattern.

Random textures fulfill this constraint
(speckle pattern).

Non-repetitive

Anisotropic

High-contrast

Non-repetitive

Isotropic

S

Low-contrast

Non-repetitive

Isotropic

High-contrast
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Example

* [he camera acquires 9x9
pixel Images
* The specimen is marked E.

with a cross-like pattern

Pixels
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Example

. White pixels = = - o e e,
-gray level255 -~ -~ -~ 7ot
* Black pixels
- gray level O
* AnImage is a
matrix of natural
Integers

555555555555555555555

555555555555555555555

555555555555555555555

555555555555555555555
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Example

Image after motion, in memory Image after motion, on screen

* [he specimen
moves such that
Its Image moves
1 pixel up and
right.
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Example

* We define a 5x5
subset in the
reference image
(before motion).

 Problem: find
where the subset
moved °°
(matching) NN

Image before motion Image after motion
255 255 0 0 0 255 255 255 255 0 0 0
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Solution

» Check possible matches at several locations and use a similarity score (correlation function) to grade
them.

» Classic correlation function: sum of squared differences (SSD) of the pixel value (smaller values =
better similarity)

Pixel coord., reference image Pixel value at (x+i; y+)) Pixel value at (x+u+i; y+v+))
n/2 )
. . * . NN 2
CEyuv)= ) (L(x+i,y+ )= X+u+i,y+v+ )
[ i, j=—n/2

Image before motion Image after motion

n: subset size (9 in our example)
Displacement (disparity)
Correlation function
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Example

subset at (x;y)=(5;9),
displacement candidate
(u;v)=(-2;-2)

255 255 0 0
255 255 0 0

uoljow a10jaq abew|
uolow Jaye abew

2
C(55-2-2)= Y (I(5+i6+ j)—1 (5-2+i5-2+))

i,j==2
(255-0)>+(0-0)>+(0-0)> +(0-0)* +(255-0)" +
(0—255)> +(0—255)" +(0—255)> +(0—255)* +(0—0)" +
(0—255)* +(0—255)" +(0—255)> +(0—255)* +(0—0)" +
(0—255)> +(0—255)" +(0—255)> +(0—-255)* +(0—0)" +
(255—-255)" +(0—255)> +(0—-255)" +(0—255)> +(255-0)" =1,170,450
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Example

subset at (x;y)=(5;9),
displacement candidate
(u;v)=(1;1)

€(5,5,1,1) = 0

Better correlation score
than candidate

(u;v)=(-2;-2) [1,170,450]

uolow Jaye abeuw|

uoljow alojag abeuw

Indeed, It Is the smallest
score achievable (perfect
match).
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Example
cat
In real world applications,
images are corrupted by B R i A R N R B R A
some noise

The SSD function will
likely never be O for a
perfect match.
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Example

The specimen moves
such that its image

moves 0.5 pixel to the
right

Need to interpolate the
Image at non-integer

254 251 2%3 127 1 0 128
|OCatI0nS Perfect match
255 252 254 126 2 0 127
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2D DIC

Principle

Image Interpolation

Optimization algorithms require
the criterion to be continuous

Images are discrete so we need
to reconstruct the continuous
information by means of
Interpolation

ae .

Raw image

T abiE T T

¥
g
riiTd
aF b

Optimized 8-tap filter
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Finding the Match SNSRI
e

o

Matching accomplished as R by

optimization problem e e

Consider the 1-D case -
horizontal displacement only

Error

U-position
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Photometric Mapping

* During image acquisition
* Lighting conditions may change
» Sensor integration time adjusted

» Pattern may become lighter/darker when
expanded/compressed
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Photometric Mapping

* The photometric mapping is not guaranteed to
be an identity, hence the DIC algorithm may
have false matches

» Solution: model the photometric transformation
and use it to design a robust correlation function
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Displacement
Mapping

General circumstances:

The subset in the deformed
Image has changed shape, e.g. a
square initial subset is likely to be
non-square.
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Displacement
Mapping

Solution:

Model this displacement
transformation (called subset
shape function) and use it to
define the deformed subset.
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Out-of-Plane Displacement

W [mm] W [mm]
5.55 5.55
5.19688 5.19688
4,84375 4,84375
4,49062 4,49062
4,1375 4,1375
3.78437 3.78437
3.43125 3.43125
3.07813 1 3.07813
2.725 { 2.725

1 2.37188 2.37188
2.01875 2.01875
1.66562 1.66562
1.3125 1.3125
0.959375 0.959375
0.60625 0.60625
0.253125 0.253125
-0.1 -0.1

3-D Digital Image Correlation
Fundamentals
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Purpose

» 3-D shape

» Strain map

* Full-fleld measurement
* Non-intrusive

 Any specimen shape

* Any motion
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z [mm]
0.21
0.2
0.19
0.18
0.17
0.16
0.15
0.14
0.13
0.12
0.11
0.1
0.09

| 0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

Purpose

» 3-D shape
» Strain map

 Full-field measurement

* Non-intrusive

correlated
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Forming Limit Diagram

* Any specimen shape Measurement

 Any motion

Left camera view Right camera view

0 Maior strain [2] 60
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Fundamentals
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28’ diameter test specimen

3D shape using Scanning Electron Microscope
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Large range of time scales
(static to 5,000,000 fps)
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Much like human vision, two
iImaging sensors provide enough
information to perceive the
environment in three-dimensions.
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Monocular (cyclopean) vision
cannot resolve for the scale of
objects.
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Obiject coordinate
system

Recovering the three-dimensional
structure of the environment
using two imaging sensors Is
called stereo-triangulation.

Stereo-triangulation requires
computing the intersection of two

optical rays.
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This is only feasible if these rays
are formulated in a common
coordinate system.

We need to model and calibrate
the stereo-rig.

\

\

=
=
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Camera Model

» One extrinsic rigid 1
transformation

 Two intrinsic perspective

Perspective projection
rojections ]
Proj S

i
Rigid transform Perspective projection
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Camera Model

Extrinsic

The relative orientation of the stereo cameras has to
be known for triangulation

Intrinsic

The internal camera parameters have to be calibrated
(focal length, image center, distortions, skew)
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3D DIC

Calibration Data Acquisition

Acquire pairs of images of a special
target undergoing arbitrary motions.

Calibration is shape measurement
process (bundle-adjustment).
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Parameter Estimation

Dedicated pattern recognition |dentification of the
algorithm transfer function

Target 3-D points Pairs of 2-D points

(approx. known) (auto-recognized)
Stereo Rig

Transfer function

Calibration target examples
Left: raw image, right: automatic pattern recognition
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Parameter Estimation

Bundle Adjustment
* No knowledge of calibration target required
» Shape of the target is measured during calibration.

* Typically, a relatively flat target is used for initialization through a
linear method.

» Generally regarded as the optimal method to calibrate cameras.
» Can provide confidence margins on all parameters estimated.



3D Reconstruction
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3D Tracking
» Relate 3D shape through t

3
D

» Algorithms similar to 2D DI

Time t Time t’
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Combining Everything

correlated
SO LUTIG NS

Forming Limit Diagram
Measurement

Left camera view Right camera view

I
] Major strain [3&] &0
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Strain Computation
Strains are computed from the measured displacements of
object points

(strains = V displacements)

3-D shape at time ¢
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Strain Computation
Strains are only defined in the tangential plane
of the surface.

The DIC data can be converted to a triangular
mesh.

Since triangles are planar, it is simple to
compute the strain on each triangle.

Same equations as found in FEM.
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Strain Computation

Smoothing

The strains computed on each triangle are noisy, unless the
triangles are fairly large.

The strains are normally smoothed using low-pass filters.
Low-pass filtering decreases spatial resolution.
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3-D Digital Image Correlation
Procedures & Practicalities
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Camera Selection

 Cameras available for different time scales
« Quasi-static (10-30 fps)
* Medium speed (500 fps)
» High-speed (50,000 fps)
» Ultra-high speed (5,000,000 fps)
« Choose sensitive, monochrome cameras
* Pixel size

 CCD vs. CMOS
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Camera Synchronization

» Stereo cameras must be synchronized
 Required accuracy depends on speed of event
* Synchronization accuracy should be small fraction of exposure time
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Camera Setup

« Cameras must not move relative to each other

» Tolerable camera motion depends on magnification

 Example:
* 1:1 magnification
* 5 micron pixel size
* Detectable motion 0.01 pixel
50 nanometer relative camera motion is detectable!!!

* For high magnifications, a rigid camera setup is paramount
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Camera Setup

 Mount cameras on rigid support

* Tie down camera cables
* Use vibration isolation for high magnification work
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Camera Setup

* For short lenses (8 mm, 12 mm), use a stereo angle of at least 35°
* With longer lenses (35 mm, 70 mm), use at least 10-15°
* If you must use small stereo angles, keep the AOI to the center of the images
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Focusing Camera

* The entire sample should be focused during the entire test

3D DIC
Basics

It can be difficult to focus a camera correctly when the depth-of-field is large

Small aperture (high f-number):

Camera

Specimen

Focal plane

Depth-of-field
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Focusing Camera

* The entire sample should be focused during the entire test
It can be difficult to focus a camera correctly when the depth-of-field is large

Large aperture (small f-number):

$pecimen

[

e~

i,

Camera Focal plane

4+——>

Depth-of-field
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Focusing Camera

 Focus with open aperture
 Close aperture after focus!

After closing aperture: _
Specimen

[ g

Camera Focal plane

Depth-of-field
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Aperture, Exposure, Lighting

» Use a short exposure to freeze any motion
 Calibration is frequently the bottleneck

* Apertures in the middle are best
 DOF concerns
* Diffraction limit & pixel size

 Difficult cases
* Wet/shiny specimen
* Metal & glare
* Transparent/translucent
» 3D and textures
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Specimen Preparation Methods
* Uniform random pattern must be applied

» Large range of application methods:
» Spray painting
 Lithography and vapor deposition
* Toner powder on paint
» Stencils
o Stamps
» Screen printing
* Adhesive-backed vinyl
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Basic Pattern Requirements

» Pattern must deform with sample
* No slip for stick-on patterns
» Dye sample for large deformations (100%-800%)
» Must hold up to testing conditions (temperature, moisture, acceleration
etc.)
» Pattern must not reinforce sample
» Use dye penetrant developer for measurements on very thin metal foils
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Basic Pattern Requirements

* |tis critical to avoid specular reflections
* |f sensor is saturated, the signal is chopped off
* Accurate matching no longer possible
» Large artificial spikes in strain

» Use matte paints

* Whenever possible, use back lighting for transparent or semi-transparent
samples

* Avoid thick paint drops Paint drop

» Use diffuse lighting : :
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Basic Pattern Requirements

» Small speckles approximately 3-5 pixels in size
* Permits analysis with small subset
* High spatial resolution

* No preferred orientation
* Uniform (check histogram)
« Matte

* No big paint blobs or uncovered areas
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Calibration Procedure

* The internal camera parameters have to be calibrated (focal length, image
center, distortions, skew).

 The relative orientation of the stereo cameras has to be known for
triangulation.

* Typically, all parameters are calibrated at the same time using a calibration
target.
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Calibration Procedure

A good calibration needs 30 good image pairs and:
 AS MUCH OUT-OF-PLANE TILT as the DOF allows

 Tilt various degrees about the horizontal and vertical
axes

« Just 1 or 2 in-plane rotation necessary

 Grid should fill at least 75% of the field of view

* The grid must be rigid; it cannot deform during
calibration

 Camera calibration is a shape measurement of the
calibration target!
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Calibration Procedure

Does one need a precision calibration
target to calibrate a stereo system?

Internal camera parameters can be
calibrated from a completely arbitrary
calibration target (only constraint:
target must be rigid).

Rotation and direction vector between
cameras can also be calibrated from
arbitrary target.

A distance between two fiducial points
has to be known accurately to recover
the absolute scale.

3D DIC
Basics
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Calibration Procedure

Stereo-base

Importance of Rotations
« (Calibration equivalent to shape measurement

» Reliable shape measurement only possible for
large stereo-baseline

« Rotations serve to increase baseline
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Calibration Procedure

» Coded targets are used for automatic
extraction

 Coded markers must be visible in all views
* Avoid glare

» Use short exposure times to freeze target
motion
* rule of thumb: 1/focal length seconds

e Ex. 30 mm lens=1/30 seconds=33 ms
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Calibration Image Distortions

» Distortions are described by high-order polynomials in the distance from
the image center

» Distortions are normally small in central image area
* Distortions rapidly increase at image boundaries

|t is critical that the calibration grid covers the entire image, particularly
close to the boundaries, to accurately calibrate lens distortions

» Short focal-length (and inexpensive) lenses require higher-order
polynomials and can only be calibrated with a large number of images
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Calibration Image Distortions

* For high magnifications, glass grids are used
» Background lighting
» Positioning
» Strong tilt becomes very difficult at smaller FOV's
* "High-magnification” options
 DOF concerns
 Calibrating in front may be impossible
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High-Speed Calibration

 Full resolution calibration
* Crop adjustment

 DOF concerns
 Calibrating in front may be impossible
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Subset Size

e Subsets must contain Subset contains no information Larger subset needed

enough speckle
information to be unique.

» Use subset bigger than
largest speckle.

» Larger subset size
provides higher
confidence at cost of
resolution and speed.
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Step Size

» Step size dictates the spacing between each data point
* Lower step size = more data points

* Overlapping subsets will not be independent

* For non-repetitive data, use step size V4 of subset size
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3-D Digital Image Correlation
Minimizing Noise & Bias
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Noise in DIC

* Noise: random, zero-mean deviations from the correct result
* Noise Is unavoidable, but can be minimized with careful setup
» Largely attributed to image quality and test setup — pay attention to
parameters than may affect this:
* Focus
» Contrast/Lighting
» Glare
» Aperture/F-stop
» Stereo-Angle/Lens selection
* Speckle pattern
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Noise in DIC

* Noise causes grey level values of pixels to have some amount of deviation
between images

* The correlation (SSD) function will likely never be 0O for a perfect match
» Consider simple case: optimization for U displacement only
» Typical error curve from correlation function:

Best match

2.50E+06

2.00E+06

». 1.50E+06
o

-
W 1.00E+06

5.00E+05

0.00E+00
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Noise in DIC

sNoise pushes our best
match away from 0!

sPixel noise

U Displacement
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Noise in DIC

How do we reduce the effect of displacement noise?

 Reduce camera noise
* Limited options
* |ncrease subset size
» Loss of spatial resolution

* Optimize speckle pattern and test setup
* This is our best and most important option
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Noise in DIC

* Noise normally cannot be controlled
* We must increase the signal
» Steeper drop = better confidence

v \

K
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How to make the bowl narrow?

» Sharp edges

Good focus
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Great Pattern Example
* Sharpie marker on white paint

* Bright whites

* Dark blacks

* Hard edges

» Consistent speckle size
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Great Pattern
Example
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3D DIC
Basics

High Contrast
Printed Pattern

« Laser printer

» (CSltarget generator
* (Good contrast

» Consistent size
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Typical Painted
Pattern

 |nconsistent size
* No bright white areas

» Soft edges




Typical Painted
Pattern
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N/

Effect of low light

35D =143 0.5 2.5
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A

Effect of too
much light
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SOLUTIONS in 3D

Optical axis

® Camera pinhole point



correlated Confidence Margins

SOLUTIONS in 3D

Optical axis

Sensor plane

® Camera pinhole point
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SOLUTIONS in 3D

Optical axis

Sensor plane

Focal length

| e Camera pinhole point
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SOLUTIONS in 3D
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SOLUTIONS in 3D

Stereo system
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SOLUTIONS n 3D

Triangulate point located on optical
axis of each camera

T
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SOLUTIONS n 3D

Add noise to 2D image
points:

This Is the noise we have
discussed so far in this
presentation
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SOLUTIONS n 3D

Add noise to 2D image
points

/9
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SOLUTIONS n 3D

Triangulate modified
3D point
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SOLUTIONS in 3D

Measure deviation from noise-free location
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SOLUTIONS n 3D

By taking the set of all possible points,
we generate a 3D volume in space.

* The volume has a height (Sigma_Y),
a width (Sigma_X), and a depth
(Sigma_Z)
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e How to minimize the error volume?
* Minimize noise
* Proper setup

Magnitude of noise

Proper setup\/
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1100
1000 |

900
800 -
700
600 |-
500
400
300 |- stdZ(out-of-plane):
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SOLUTION S Effects of setup
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SOLUTION S Effects of setup
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SOLUTIONS Effects of setup

Noise Is lowest near the optical axis

std_U_exp [mm] std_V_exp [mm]
0.0312 0.0312
0.02945 0.02945
0.0277 0.0277
0.02595 0.02595
0.0242 0.0242
0.02245 0.02245

= 0.0207 0.0207

10.01895 0.01895

= 0.0172 0.0172

0.01545 0.01545
10.0137 . 0.0137
o 0.01195 e i g f{%‘“‘w" % 001195

"hb.
"

0.0102 0.0102

0.00845 0.00845
0.0067 0.0067

0.00495 0.00495

0.0032 0.0032



correlated

SOLUTIONS

Effects of setup

dependent on stereo angle

Std of exx (us)
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Noise In displacement and strain is strongly
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SOLUTIONS

» Bias: systematic deviations from the correct result
* (Can be present in location, displacement, and strain

» Bias can be reduced or eliminated with proper setup and
parameters

« Common sources of bias in DIC:
 Aliasing
 Heat waves
 Contaminations
* Poor calibration
* Non-parametric distortions
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Bias Due to Aliasing

SOLUTIONS

» Aliasing occurs when a signal isn't sampled
frequently enough to represent it.

» Aliasing in a 1D signal.

i

7 8 9 10
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Bias Due to Aliasing

SOLUTIONS

Aliasing occurs when the scene
contains high-frequency content
that cannot be represented by
the pixel resolution of the
Image.
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Bias Due to Aliasing

SOLUTIONS

Overly fine pattern
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Bias Due to Aliasing

SOLUTIONS

Showing translation
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Bias Due to Aliasing

SOLUTIONS

We calculate the actual displacement vs. the local measured displacement
The error Is plotted vs. position

The error varies with the pixel position 1pix
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Bias Due to Aliasing

SOLUTIONS

This can cause serious strain errors!

\Waves of and tensile strain causes a
moiré pattern.

0.06

0.04 I\ A R |
V \
N
0.02 N | I
H

1.5 2.5

0.00194

0.00180375

—

—
- —
>

0.0016675

0.00153125

0.001385

0.00125875

0.0011225

0.00098625

0.00085

0.00071375

0.0005775

0.02 \ 0.00044125

0.000305

0.00016875

3.25e-05

-0.04
-0.00010375

-0.00024

-0.06
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Bias Due to Aliasing

SOLUTIONS

Low fill factors can exacerbate the aliasing ISsue for a
given pattern
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Bias Due to Aliasing

SOLUTIONS

An example of an extremely aliased image — due to dithering from a
laser printer
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Bias Due to Aliasing

SOLUTIONS

Can be mitigated by low-pass filtering image at the expense of
resolution

Z [mm]) Z [mm]
0.154 i 0.154
0.133125 0.133125
0.11225 0.11225
— 0.091375 — 0.091375
0.0705 0.0705
0.049625 0.049625
0.02875 -1 0.02875
—{ 0.00787499 — 0.00787499
~ -0.013 ~ -0.013
ﬁ -0.033875 -0.033875
{ -0.05475 { -0.05475
-0.075625 -0.075625
-0.0965 -0.0965
-0.117375 -0.117375
-0.13825 -0.13825
-0.159125 -0.159125
-0.18 -0.18
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Bias Due to Aliasing

SOLUTIONS

* Aliasing can cause severe biases and noise In displacement and
strain

* Dangerous because it does not always appear in the “sigma”
value

» Best to avoid in the first place — bigger patterns or more
magnification

» Can be mitigated
* Low-pass image filter

* This comes at the expense of resolution
» Higher order interpolation
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SOLUTIONS

Bias Due to Aliasing

Better pattern




V [mm]
0.0335
0.0297813
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0.00746875
0.00375
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-0.0036875
-0.00740625
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-0.0185625
-0.0222812
-0.026

;L' 0.0223438

— 0.018625
1 0.0149062
|

=1 0.0111875

-‘|
¢
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correlated Bias Due to Heat

SOLUTIONS Waves

Solution:
» Cool light sources (LED, fiber optic)

* Move heat source so heat waves are out of optical path
e Small fan to mix air

* Time average results
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Contaminations

SOLUTIONS

Contamination (e.g. dust on sensor) can cause severe local bias in
displacement and strain

& 8 x
T 8 8N 85

Displacement  Strain

* Not possible to mitigate through processing techniques

* Check before taking measurements
 May not be seen in speckle images
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SOLUTIONS Contaminations

» Contaminations can be seen by
» Completely defocusing camera
» Using a uniform gray background

 Move camera
* |f spot stays fixed, contamination present

» |f contaminations are present, turn lens
* |f spot moves with lens rotation, contamination is on lens
* |f spot stays in place, spot is on sensor or IR filter

» Use compressed air to blow dust particles away

* Always use lens caps and camera covers to avoid contaminations in the
first place
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SOLUTIONS Calibration

A low calibration score is indicative of a good calibration IF we have
enough information in the calibration images

 Grid fills image
 Large grid tilts
* 15-25 Image sets

If using short focal length lenses (8mm, 12mm), you might need to
change the distortion order to 2 or 3 in the distortion window.

In high magnification applications, you might need to select "High
Mag” in the calibration window.
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SOLUTIONS Calibration

Distortion order for short lenses

» Calibrate at distortion order 1. Look at your kappa 1 (a lens distortion
parameter) in your calibration results

» Calibrate at distortion order 2. You'll have a kappa 2 now, but if your
kappa 1 is the same as what you got for a distortion order of 1, then the
distortion order of 1 was OK

* |f the kappa 1 changed, then repeat for an order of 3 and see if kappa 2
changed

* Once you figure out the distortion order, you can use that that order
anytime you use that camera-lens combination



correlated Bias Due to Poor

SOLUTIONS Calibration

High Magnification
* For high magnification instances you might see very large calibration errors.

* This is because the limited depth of field doesn’t allow us to tilt the grid enough in
order to extract the camera sensor positions

* Check your center x, center y for each camera in your calibration results

* The centers should be ROUGHLY the centers of the sensors (i.e. for 5SMP cameras
that are 2448x2048 pixels, you should see centers of 1224,1024)

* |f centers are WAY off (by more than 50%; maybe even negative), select “high mag”
* This will force the centers to the center of the sensor (1224x1024 in this case)

* Only use the high mag option when completely necessary because it forces the
software to make some assumptions that we'd rather extract from the calibration
image

* "High mag” is not an option for the stereo microscope module; we use a different
calibration method (see next slides)
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SOLUTIONS

Follow us for the
latest updates!

facebook.com/CorrelatedSolutions @CorrelatedSol @CorrelatedSolutions

Visit
support.correlatedsolutions.com

For more help and to search our

extensive knowledgebase
Support Portal

youtube.com/user/CorrelatedSolutions linkedin.com/company/correlated-solutions-inc-



facebook.com/CorrelatedSolutions
https://twitter.com/CorrelatedSol
https://www.youtube.com/user/CorrelatedSolutions
https://www.instagram.com/correlatedsolutions/
https://www.linkedin.com/company/10484847/
support.correlatedsolutions.com
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